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This paper presents an Adaptive Tabu Search algorithm (denoted by ATS) for solving a problem of curric-
ulum-based course timetabling. The proposed algorithm follows a general framework composed of three
phases: initialization, intensification and diversification. The initialization phase constructs a feasible ini-
tial timetable using a fast greedy heuristic. Then an adaptively combined intensification and diversifica-
tion phase is used to reduce the number of soft constraint violations while maintaining the satisfaction of
hard constraints. The proposed ATS algorithm integrates several distinguished features such as an origi-
nal double Kempe chains neighborhood structure, a penalty-guided perturbation operator and an adap-
tive search mechanism. Computational results show the high effectiveness of the proposed ATS
algorithm, compared with five reference algorithms as well as the current best known results. This paper
also shows an analysis to explain which are the essential ingredients of the ATS algorithm.
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1. Introduction

Timetabling is an area of increasing interest in the community
of both research and practice in recent decades. In essence, it con-
sists in assigning a number of events, each with a number of fea-
tures, to a limited number of resources subject to certain (hard
and soft) constraints. Typical cases in this area include educational
timetabling [8], sport timetabling [25], employee timetabling [3],
transport timetabling [26] and so on. In this paper, we consider
an educational timetabling problem.

Educational timetabling problems are usually classified into
two categories [18]: exam timetabling and course timetabling.
The latter can be further divided into two sub-categories: post
enrollment-based course timetabling and curriculum-based course
timetabling. The main difference is that for post enrollment timet-
abling, conflicts between courses are set according to the students’
enrollment data, whereas the curriculum-based course timetable is
scheduled on the basis of the curricula published by the university.
In this paper, our study is focused on the curriculum-based course
timetabling (CB-CTT), which was recently proposed as the third
track of the Second International Timetabling Competition (ITC-
2007) [1]. One of the main objectives of this competition is to re-
duce the gap between research and practice within the area of edu-
cational timetabling [21].
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For university curriculum-based course timetabling, a set of lec-
tures must be assigned into timeslots and rooms subject to a given
set of constraints. Usually, two types of constraints can be defined:
Those which must be strictly satisfied under any circumstances
(hard constraints) and those which are not necessarily satisfied
but whose violations should be desirably minimized (soft con-
straints). An assignment that satisfies all the hard constraints is
called a feasible timetable. The objective of the CB-CTT problem is
to minimize the number of soft constraint violations in a feasible
timetable.

The general timetabling problem is known to be complex and
difficult. In this context, exact solutions would be only possible
for problems of limited sizes. Instead, heuristic algorithms based
on metaheuristics have shown to be highly effective. Examples of
these algorithms include graph coloring heuristics [6], Tabu Search
[31], simulated annealing [29], evolutionary algorithms [27], case-
based reasoning [5], two-stage heuristic algorithms [8,10,17] and
so on. Interested readers are referred to [18] for a comprehensive
survey of the automated approaches for university timetabling
presented in recent years.

The objective of this paper is two-fold: Describing a three-
phases solution algorithm for solving the CB-CTT problem and
investigating some essential ingredients of the proposed algo-
rithm. The proposed ATS algorithm follows a general framework
composed of three phases: Initialization, intensification and diver-
sification (Section 3). The initialization phase builds a feasible ini-
tial timetable using a fast greedy heuristic. Then the intensification
and diversification phases are adaptively combined to reduce the
number of soft constraint violations while maintaining the satis-
faction of hard constraints. The performance of the proposed
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hybrid algorithm was assessed on a set of 4 instances used in the
literature and a set of 21 public competition instances from ITC-
2007, showing very competitive results (Section 4).

As the second objective of this paper, we carefully investigate
several important features of the proposed algorithm (Section 5).
The analysis shed light on why some ingredients of our ATS algo-
rithm are essential and how they lead to the efficiency of our
ATS algorithm.

2. Curriculum-based course timetabling
2.1. Problem description

The CB-CTT problem consists in scheduling lectures of a set of
courses into a weekly timetable, where each lecture of a course
must be assigned a period and a room in accordance with a given
set of constraints [13]. A feasible timetable is one in which all lec-
tures have been scheduled at a timeslot and a room, so that the
hard constraints H; — Hy (see below) are satisfied. In addition, a
feasible timetable satisfying the four hard constraints incurs a pen-
alty cost for the violations of the four soft constraints S; — S4. Then,
the objective of the CB-CTT problem is to minimize the number of
soft constraint violations in a feasible solution. The four hard con-
straints and four soft constraints are:

e Hj. Lectures: Each lecture of a course must be scheduled in a
distinct period and a room.

e H,. Room occupancy: Any two lectures cannot be assigned in
the same period and the same room.

e Hs. Conflicts: Lectures of courses in the same curriculum or
taught by the same teacher cannot be scheduled in the same
period, i.e., no period can have an overlapping of students nor
teachers.

e H,. Availability: If the teacher of a course is not available at a
given period, then no lectures of the course can be assigned to
that period.

e S;. Room capacity: For each lecture, the number of students
attending the course should not be greater than the capacity
of the room hosting the lecture.

¢ S,. Room stability: All lectures of a course should be scheduled
in the same room. If this is impossible, the number of occupied
rooms should be as few as possible.

e S3. Minimum working days: The lectures of a course should be
spread into the given minimum number of days.

e S;. Curriculum compactness: For a given curriculum, a viola-
tion is counted if there is one lecture not adjacent to any other
lecture belonging to the same curriculum within the same day,
which means the agenda of students should be as compact as
possible.

We present below a mathematical formulation of the problem
which is missing in the literature.

2.2. Problem formulation

The CB-CTT problem consists of a set of n courses C = {cy,
C2,...,Cn} to be scheduled in a set of p periods T = {t,t2,...,tp}
and a set of mrooms R = {ry,15,...,rn}. Each course c; is composed
of I; same lectures to be scheduled. For simplicity and when no
confusion is possible, we do not distinguish between lecture, course
and course label in the following context. A period is a pair com-
posed of a day and a timeslot, p periods being distributed in d days
and h daily timeslots, i.e., p = d x h. In addition, there are a set of s
curricula CR = {Crq,Cr,...,Crs} where each curriculum Cry is a
group of courses that share common students.

We choose a direct solution representation for simplicity rea-
sons. A candidate solution is represented by a p x m matrix X
where x;; corresponds to the course label assigned at period t;
and room r;. If there is no course assigned to period t; and room
1j, then x;; takes the value “—1". With this representation we en-
sure that there will be no more than one course assigned to each
room in any period, meaning that the second hard constraint H;
will always be satisfied. For courses, rooms, curricula and solution
representation X, a number of symbols and variable definitions are
presented in Table 1.

Given these notations, we can describe the CB-CTT problem in a
formal way for a candidate solution X. The four hard constraints
and the penalty costs for the four soft constraints are as follows:

e H;. Lectures: V¢, € C,

> rxi=al =k

i=1,..pj=1...m

where y is the truth indicator function which takes values of 1 if
the given proposition is true and O otherwise.

Table 1
Notations used for the CB-CTT problem.

Symbols Description
n The total number of courses
m The total number of rooms
d The number of working days per week
h The number of timeslots per working day
p The total number of periods, p =d x h
s The total number of curricula
C Set of the courses, C = {c1,---,cq}, |C| =n
R Set of the rooms, R = {ry,---,rm}, |R| =m
T Set of the periods, T = {t1,---,tp}, [T|=p
CR Set of the curricula, CR = {Cry,---,Crs}, |CR| =
Cry The kth curriculum including a set of courses
I; The number of lectures of course c;
I The total number of all lectures, [ = 31
std; The number of students attending course c;
tc; The teacher instructing course c;
md; The number of minimum working days of course c;
cap; The capacity of room r;
uav;; Whether course c¢; is unavailable at period t;. uav;j =1 if it is
unavailable, uav;; = 0 otherwise
con;j Whether course ¢; and ¢; are conflict with each other;
{0, if (tci#tc;) A (VCrq, € ¢ Crq V cj ¢ Cry),
con;; = .
1, otherwise.
Xij The course assigned at period t; and room r;
nry(X) Number of rooms occupied by course c; for a candidate solution X;
nri(X) = 1 03(X), where
1, if Vij EX, Xkj = Ci,
7iX) = {O, otherwise.
nd;(X) Number of working days that course c; takes place at in candidate
solution X; nd;(X) = >, #;(X), where
By(X) = {[1) if VX”'”.E X, Xup=CiA[u/h =],
, otherwise.
app,;(X) Whether curriculum Cry, appears at period t; in candidate solution X;

1, if Vxij eX, xij=cuAcy €Cry,

app;(X) = {07 otherwise.
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e H,. Room occupancy: This hard constraint is always satisfied
using our solution representation.
o Hs. Conflicts: Vx;j, Xix € X,Xij = Cy, Xix = Cy,

cony, = 0.
e H,. Availability: Vx;j = ¢, € X,
uavy; = 0.
e Si. Room capacity: Vx;; = ¢, € X,
filxij) = {
¢ S,. Room stability: Vc; € C,
fz(Ci) = nri(X) —-1.
e S3. Minimum working days: Vc; € C,

fia = {70 1 A0 <md.
o, otherwise.

stdy — cap;, if std, > cap;,
0, otherwise.

e S, Curriculum compactness: Vx;; = ¢, € X,

faij) = Y xdcw € Crq} - is0:(X),

CrgeCR
where
1, if (imod h=1vapp,; ;(X)=0),
A (imod h=0Vappy; (X) =0),
otherwise.

is0g;(X) =
0

)

With the above formulation, we can then calculate the total soft
penalty cost for a given candidate feasible solution X according to
the cost function f defined in formula (1). The goal is then to find a
feasible solution X" such that f(X*) < f(X) for all X in the feasible
search space

fX) = Z o - fi(xij) +ZOC2 fa(ci) +ZOC3 f(ci)

XijeX cieC cieC

£ o fiy) g

xijeX

o1, 0, o3 and o4 are the penalties associated to each of the soft con-
straints. In the CB-CTT formulation, they are set as: oy = 1,05 =
1,03 =5,04 =2. Note that oy ~ 04 are fixed in the problem
formulation and should not be confused with the penalty parame-
ters used by some solution procedures.

3. Solution method

Our Adaptive Tabu Search algorithm (ATS) follows a general
framework composed of three phases: initialization, intensification
and diversification. The initialization phase (Section 3.1) constructs
a feasible initial timetable using a fast greedy heuristic. As soon as
a feasible initial assignment is reached, the adaptively combined
intensification and diversification phase is used to reduce the num-
ber of soft constraint violations. The intensification phase (Section
3.2) employs a Tabu Search algorithm [15] while the diversification
phase (Section 3.3.1) is based on a penalty-guided perturbation
operator borrowed from Iterated Local Search [20]. Furthermore,
two self-adaptive mechanisms (Section 3.3.2) are employed to pro-
vide a tradeoff between intensification and diversification.

3.1. Initial solution

The first phase of our algorithm generates a feasible initial solu-
tion satisfying all the hard constraints (H; — Hs). This is achieved

by a sequential greedy heuristic starting from an empty timetable,
from which course assignments are constructed by inserting one
appropriate lecture into the timetable at each time. At each step,
two distinct operations are carried out: one is to select an unas-
signed lecture of a course, the other is to determine a period-room
pair for this lecture.

In the lecture selection heuristic, the courses with a small num-
ber of available periods and a large number of unassigned lectures
have priority. This heuristic is similar to the greedy coloring heu-
ristic DSATUR [4]. Once we have chosen one lecture of a course
to assign, we want to select a period among all available ones that
is least likely to be used by other unfinished courses at later steps.
For this purpose, when attempting to make a feasible insertion
move, we count the total number of unfinished courses that be-
come unavailable at the current period. The feasible lecture inser-
tion moves with small value of this number are highly favored. Ties
are broken according to the soft constraint penalty incurred.

We have no proof that this greedy heuristic guarantees to find a
feasible solution for a given instance. However, for all the tested in-
stances in this paper, a feasible solution is always easily obtained.
Notice that infeasibility of the initial solution does not change the
general ATS approach since unsatisfied hard constraints can be re-
laxed and incorporated into the evaluation function of the ATS
algorithm.

3.2. Tabu Search algorithm

In this section, we focus on the basic search engine of our ATS
algorithm — Tabu Search [15]. Our TS procedure exploits two neigh-
borhoods (denoted by N; and N, see below) in a token-ring way
[12]. More precisely, we start the TS procedure with one neighbor-
hood. When the search ends at its best local optimum, we restart TS
from this local optimum, but with the other neighborhood. This
process is repeated until no improvement is possible and we say
that a TS phase is achieved. In our case, the TS procedure begins
with the basic neighborhood Ni: Ny — N, — Ny — N;....

3.2.1. Search space and evaluation function

Once a feasible timetable that satisfies all the hard constraints is
reached, our intensification phase (TS algorithm) optimizes the soft
constraint cost function without breaking hard constraints any
more. Therefore, the search space of our TS algorithm is limited
to the feasible timetables. The evaluation function is just the soft
constraint violations as defined in formula (1).

3.2.2. Neighborhood structure

It is widely believed that one of the most important features of a
local search algorithm is the definition of its neighborhood. In a lo-
cal search procedure, applying a move mv to a candidate solution X
leads to a new solution denoted by X @ mwv. Let M(X) be the set of
all possible moves which can be applied to X while maintaining
feasibility, then the neighborhood N of X is defined by:
NX) ={X@®mv|mve MX)}. For the CB-CTT problem, we use
two distinct moves denoted by SimpleSwap and KempeSwap.

Basic neighborhood N;: N; is composed of all feasible moves of
SimpleSwap. A SimpleSwap move consists in exchanging the hosting
periods and rooms assigned to two lectures of different courses.
Applying the SimpleSwap move to two different courses x;; and
Xy ; in solution X consists in assigning the value of x;; to x;; and in-
versely the value of x;; to x;;. Note that moving one lecture of a
course to a free position is a special case of the SimpleSwap move
where one of the lectures is empty and it is also included in Nj.
Therefore, the size of neighborhood N; is bounded by O(l-p-m)
where [ = 27'l; because there are I lectures and the number of
swapping lectures (including free positions) is bounded by
O(p - m).
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Advanced neighborhood N,: N, is composed of all feasible
moves of KempeSwap. A KempeSwap move is defined by inter-
changing two Kempe chains. If we focus only on courses and con-
flicts, each problem instance can be looked as a graph G where
nodes are courses and edges connect courses with students or tea-
cher in common. In a feasible timetable, a Kempe chain is the set of
nodes that forms a connected component in the subgraph of G in-
duced by the nodes that belong to two periods. A KempeSwap pro-
duces a new feasible assignment by swapping the period labels
assigned to the courses belonging to one or two specified Kempe
chains.

Formally, let K; and K, be two Kempe chains in the subgraph
with respect to two periods t; and t;, a KempeSwap produces an
assignment by replacing t; with (& \ (Kq UK>)) U (5N (K; UK3))
and ¢; with (¢ \ (K7 UK3)) U (¢ N (K7 UK?)). Note that in the defini-
tion of N, at least three courses are involved, i.e., | Ky | + | K2 | > 3.
For instance, Fig. 1a depicts a subgraph deduced by two periods t;
and t; and there are five Kempe chains: K, = {c,¢2,¢7,Cs},
Kb = {C3,C6,C9}, KC = {C4,C]],C12}, Kd = {C5} and I{g = {C10}. In this
example, each room at periods t; and t; has one lecture. A Kempe-
Swap of K, and K. produces a new assignment by moving
{c3,¢4,C6} to tj and {co, C11,C12} to t;, as shown in Fig. 1b.

Note that in our KempeSwap, one of the swapping Kempe chains
can be empty, i.e., we add a new empty Kempe chain Ky = &. In
this case, the move of KempeSwap degenerates into a single Kempe
chain interchange. Formally, it means replacing t; with
(t: \K) U (t; nK) and t; with (t; \ K) U (t; " K) where K is the non-
empty Kempe chain [22,29]. For example, in Fig. 1a, if we exchange
the courses of the Kempe chain Ky, it produces an assignment by
moving {cy, ¢} to tj and {c7, cs} to t;. It is noteworthy to notice that
our double Kempe chains interchange can be considered as a gen-
eralization of the single Kempe chain interchange known in the lit-
erature [8,29].

Once courses are scheduled to periods, the room assignment
can be done by solving a bipartite matching problem [24], where
both heuristic and exact algorithms can be employed. In this paper,
we implement an exact algorithm, the augmenting path algorithm
implemented in [28], which runs in O(|V||E|).

Since KempeSwap can be considered as an extended version of
swapping two lectures (and afterwards several other related lec-
tures in the specified Kempe chain(s) being moved), the size of
N, is bounded by O(I- (I + p)), where the size of double Kempe
chains interchange is bounded by 0([2) and the size of single
Kempe chain interchange is bounded by O(! - p).

©160X6CJ010
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(a) ' (b)
Ka={C1,C2,C7,Cs}, Kb={C3,Cs,Co}, Ke={C4,C11,Ci2}, Ka={Cs}, Ke={Cio}

Fig. 1. Kempe chain illustrations.

In order to maintain the feasibility of the Kempe chain neigh-
borhood solution, another important property must be verified:
The number of courses in each period (after Kempe chain ex-
change) cannot exceed the number of available rooms. For exam-
ple, in Fig. 1, with respect to the single Kempe chain interchange,
only one feasible move can be produced by interchanging courses
in K,, while other four single Kempe chain interchanges (K, K, K4
and K.) cannot produce feasible solutions since these moves vio-
late the above-mentioned property and thus are forbidden. In fact,
this property largely restricts the number of acceptable candidate
solutions for single Kempe chain interchanges. We call this restric-
tion room allocation violation.

However, as soon as the double Kempe chains interchange is
performed, the room allocation violation is relaxed and a large num-
ber of feasible moves can be generated. For instance, in Fig. 1 three
double Kempe chains interchanges can be produced by swapping
K, and K., K. and K as well as K, and K..

We will show in Section 5.2 that the proposed double Kempe
chains move is much more powerful than other existing moves
(one lecture move, two lectures swap and single Kempe chain
interchange) for timetabling [8,18].

3.2.3. Incremental evaluation and neighborhood reduction

In order to evaluate the neighborhood in an efficient way, we
use an incremental evaluation technique. The main idea is to main-
tain in a special data structure the move value for each possible
move of the current solution. Each time a move is carried out,
the elements of this data structure affected by the move are up-
dated accordingly.

However, the move evaluation of the advanced neighborhood
N, needs much more computational efforts than that of N; due
to the running of the matching algorithm. In order to save CPU
time, we attempt to use the matching algorithm as few as possible.
According to the problem formulation, the soft costs can be classi-
fied into the room-related (S; and S,) and period-related (S5 and S,)
costs. From the definition of N, it is clear that the period-related
cost Af, can be calculated without calling the matching algorithm
and therefore it is easy to calculate, while the calculation of the
room-related cost Af; is time consuming due to the higher compu-
tational cost of the matching algorithm. In our implementation, we
only record and update the period-related move values Af, for the
neighborhood solutions of N,, while for the room-related move
values, a special reduction technique is employed to decide
whether to call the matching algorithm or not.

In fact, we use the period-related cost Af, as a goodness estima-
tion of the Kempe move. Specifically, if the period-related cost Af,
is promising (i.e., Af, < 7, practically T = 2 produces competitive
results for a large class of instances), then we call the matching
algorithm to make room allocations and obtain the total incremen-
tal evaluation cost Af. Otherwise, this neighborhood candidate
solution will be discarded. In this way, at each iteration only a
small subset of the promising neighboring solutions are thoroughly
evaluated, thus allowing us to save a considerable amount of CPU
time.

3.2.4. Tabu list management

Within TS, a tabu list is introduced to forbid the previously vis-
ited solutions to be revisited. In our TS algorithm, when moving
one lecture from one position (period-room pair) to another (using
N;), or from one period to another (using N, ), this lecture cannot be
moved back to the previous position (for N;) or period (for N;) for
the next tt iterations (tt is called the “tabu tenure”). More precisely,
in neighborhood Ny, if a lecture of a course c; is moved from one
position (tj, ) to another one, then moving any lecture of course
¢; to the position (t;,ry) is declared tabu. On the other hand, in
neighborhood N, (either single or double Kempe chains move), if
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one lecture of course ¢; is moved from period ¢; to ¢, it is tabu to
assign any lecture of ¢; to tj using a (single or double) Kempe chain
move.

The tabu tenure tt(c;) of a course c; is tuned adaptively accord-
ing to the current solution quality f and the frequency of the moves
involving lectures of course c;, denoted by tt(c;) = f + ¢ - freq(c;)
where ¢ is a parameter that takes values in [0,1]. The first part
of this function can be explained by the reason that a solution with
high soft cost penalties should have a long tabu tenure to escape
from the local optimum trap. The basic idea behind the second part
is to penalize a move which repeats too often. The coefficient ¢ is
dynamically defined as the ratio of the number of conflicting
courses of ¢; over the total number of courses. It is reasonable to
think that a course involved in a large number of conflicts has more
risk to be moved than a course having fewer conflicts. Notice that
freq(c;) is the essential part of the above tabu tenure function and
frequency-based tabu tenure techniques have been used in the lit-
erature, see e.g. [30].

3.2.5. Aspiration criteria and stop condition

In our TS algorithm, the tabu status of a move is disabled if it
leads to a solution better than the current best solution. Our TS
stops when the best solution cannot be improved within a given
number 0 of moves and we call this number the depth of TS.

3.3. Adaptive TS: Combining TS with perturbation

TS and Iterated Local Search (ILS) are two well-known metaheu-
ristics and have proved their efficiency for solving separately a
large number of constraint satisfaction and optimization problems
[15,20]. In this paper, we consider the possibility of combining
them to achieve very high performances for the CB-CTT problem.

TS can be used with both long and short CPU time. In general,
long CPU time would lead to better results. However, if the total
computation time is limited (e.g., this is the case of the ITC-
2007), it would be preferred to combine short TS runs with some
robust diversification operators. Interestingly, ILS provides such
diversification mechanisms to guide the search to escape from
the current local optimum and move towards new promising re-
gions in the search space [20].

3.3.1. A penalty-guided perturbation strategy

In our case, when the best solution cannot be improved any
more using the TS algorithm, we employ a perturbation operator
to reconstruct the obtained local optimum solution. Perturbation
strength is one of the most important factors of ILS. In general,
if the perturbation is too strong, it may behave like a random re-
start. On the other hand, if the perturbation is too small, the
search would fall back into the local optimum just visited and
the exploration of the search space will be limited within a small
region.

In order to guide efficiently the search to move towards new
promising regions of the search space, we employ a penalty-guided
perturbation operator to destruct the reached local optimum solu-
tion. This operator is based on the identification of a set of the first
q highly-penalized lectures and a random selection of a given num-
ber of neighborhood moves (in this paper, we experimentally used
q = 30). We call the total number of perturbation moves perturba-
tion strength, denoted by 7.

Specifically, when the current TS phase terminates, all the lec-
tures are ranked in a non-increasing order according to their soft
penalties involved. Then, # lectures are selected from the first q
highly-penalized ones, where the lecture of rank k is selected
according to the following probability distribution:

P(k) x k™,

where ¢ is a positive real number (empirically set at 4.0). After that,
n feasible moves of SimpleSwap or KempeSwap are randomly and
sequentially performed, each involving at least one of the selected
n lectures.

As previously mentioned, the perturbation strength  is one of
the most important ingredients of ILS, which determines the qual-
ity gap between the two solutions before and after perturbation. In
our case, 7 is adaptively adjusted and takes values in an interval
[Mmins Mmax) (s€t experimentally 7, = 4, 1. = 15).

3.3.2. Two self-adaptive mechanisms for ATS
Adaptive Tabu Search

: Input: I: an instance of CB-CTT
: Output: X': the best solution found so far
: % Initialization: lines 6-8
: % Intensification: lines 11-17
: % Diversification: lines 10, 23
: X « feasible initial solution
iHO'QHQOvVIHrImin
: X* — TS(Xo, 0)
: repeat
X1 — Perturb(X™, 1)
% perturb X* with strength 7, get X/
11:  X* —TS(X,0)
12:  if f(X") <f(X") + 2 then
13: repeat
14: 06— (1+p-0
% gradually increase the depth of TS
15: X" <« TS(X",0)

—_

16: until no better solution is obtained
17: end if
18: if f(X") < f(X) then
% accept X* as the best solution found so far
20: 0 — 0o, 1 — Ninin
21: else
22: 0«— 0Oy, E—E+1
23: . N« max{r]min +4- 5’ ’/’max}
24: end if

25: until (stop condition is met)

Our ATS algorithm integrates intensification (TS) and diversifi-
cation (ILS’s Perturbation) phases. Instead of just simply combining
the TS and ILS algorithms, we attempt to integrate them in a more
meaningful way. The depth of TS 0 and the perturbation strength n
seem to be two essential parameters which control the behavior
of the ATS algorithm. On the one hand, a greater 0 value ensures
a more intensive search. On the other hand, a greater 5 corre-
sponds to more possibilities of escaping from the current local
minimum. In order to get a continuous tradeoff between intensifi-
cation and diversification, we devise a mechanism to dynamically
and adaptively adjust these two important parameters according
to the history of the search process.

Our Adaptive Tabu Search algorithm is summarized in Algo-
rithm “Adaptive Tabu Search”. At the beginning of the search, we
run a short TS where the depth of TS is small (say 0 = 10). When
TS cannot improve its best solution, perturbation is applied to
the best solution with a weak strength (1 = #,,;,,). When the search
progresses, we record the number of TS phases (denoted by ¢)
without improvement in cost function. The depth of TS 0 and the
perturbation strength n are dynamically adjusted as follows: when
the local minimum obtained by TS is promising, i.e., it is close to
the current best solution (f < fpest + 2), 0 is gradually increased to
ensure a more and more intensive search until no improvement
is possible, i.e., # = (1 + ) - 0 at each iteration (¢ = 0.6). Similarly,
perturbation strength is gradually increased so as to diversify more
strongly the search if the number of non-improving TS phases in-
creases. Moreover, the search turns back to the short TS after each
perturbation, while the perturbation strength is set back to #,,;, as
soon as a better solution is found.
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For acceptance criterion in the perturbation process, we use a
strong exploitation technique, i.e., only better solution is accepted
as the current best solution. As soon as the local optimal solution
X" obtained by TS is better than the best solution X* found so
far, we replace the best known solution X* with X*, as shown in
lines 18 and 19 of Algorithm “Adaptive Tabu Search”. In this paper,
we use two stop conditions as described: The time limit imposed
by the ITC-2007 competition rules and a maximum number of
moves (see Section 4).

4. Experimental results
4.1. Problem instances and experimental protocol

To evaluate the efficiency of our proposed ATS algorithm, we
carry out experiments on two different data sets. The first (4 in-
stances) was previously used in the literature for the old version
of the CB-CTT problem [12]. The second (21 instances) is from
the Second International Timetabling Competition [1].

Our algorithm is programmed in C and compiled using GNU
GCC on a PC running Windows XP with 3.4GHz CPU and 2.0Gb
RAM. To obtain our computational results, each instance is solved
100 times independently with different random seeds.

All the computational results were obtained without special
tuning of the parameters, i.e., all the parameters used in our algo-
rithm are fixed (constant) or dynamically and automatically tuned
during the problem solving for all the instances considered here. It
is possible that better solutions would be found by using a set of
instance-dependent parameters. However, our aim is to design a
robust solver which is able to solve efficiently a large panel of in-
stances. Table 2 gives the descriptions and settings of the impor-
tant parameters used in our ATS algorithm.

4.2. Results under ITC-2007 timeout condition

Our first experiment aims to evaluate the ATS algorithm on the
4 previous instances (testl-test4) and 21 competition instances
(comp01-comp21) of the ITC-2007, by comparing its performance
with its two basic components (TS and ILS). To make the compar-
ison as fair as possible, we implement the TS and ILS algorithms by
reusing the ATS algorithm as follows. We define the TS algorithm
as the ATS algorithm with its adaptive perturbation operator dis-
abled. In order to give more search power to the TS algorithm,
the depth of TS is gradually increased until the timeout condition
is met. The ILS algorithm is the ATS algorithm with the tabu list
disabled. All the other ingredients of the ATS are thus shared by
the three compared algorithms.

Table 2
Settings of important parameters.

Parameters Description Values or updating
0o Basic depth of TS 10
u Increment speed of 0 0.6
0 Depth of TS 0=(1+p)-0
& Non-improvement TS phases E=¢+1
Nimin Basic perturbation strength 4
Nmax Strong perturbation strength 15
n Perturbation strength N = max{Npin + 4 & Nmax
y) Updating factor of n 0.3
q Total candidate number of perturbation 30
lectures
13 Importance factor for perturbation 4.0
lecture selection
T Reduction cutoff for advanced 2

neighborhood N,

We also assess the performance of our ATS algorithm with re-
spect to five other reference algorithms, which include ITC-2007
organizer’s algorithm developed by De Cesco et al in [11], the win-
ner algorithm of ITC-2007 by Miiller in [23], the algorithm by Lach
and Liibbecke in [16], the 4th place algorithm of ITC-2007 by Gei-
ger in [14] and the 5th place algorithm of ITC-2007 by Clark et al. in
[9].

All these 8 algorithms use the same stop condition which is just
the timeout condition required by ITC-2007 competition rules. On
our PC, this corresponds to 390 seconds. Table 3 summarizes the
computational statistics of our ATS algorithm and Table 4 gives
the best results obtained by our three algorithms and these refer-
ence algorithms.

In Table 3, columns 2-7 give the computational statistics of our
ATS algorithm, according to the following performance indicators:
the best score (fmin), the average score (faye), the standard deviation
(o), the total number of iteration moves (Iter), the total number of
perturbations (Pert) and the total CPU time on our computer
needed to find the best solution f,;, (Time). If there exist multiple
hits on the best solution in the 100 independent runs, the values
listed in Table 3 are the average over these multiple best hits.

Table 4 shows the best results obtained by our three algorithms
ATS, TS and ILS, as well as the five reference algorithms. The last
column in Table 4 also indicates the best known results obtained
by these five reference algorithms for each instance under the
ITC-2007 timeout condition. From Table 4, one clearly observes
that the ATS algorithm outperforms its two basic components TS
and ILS alone on all the instances (except for three where they
get the same score). This demonstrates the importance of the hy-
brid mechanism of adaptively integrating TS and ILS.

When comparing with the best known results obtained by the
five reference algorithms (last column in Table 4), one observes
that the best results obtained by our ATS algorithm are quite com-
petitive with respect to these previously best known results (best
results for each instance are indicated in bold and equal best
results are indicated in italic). For the 4 previous instances, ATS sig-
nificantly improves the best known results obtained by De Cesco et

Table 3
Computational statistics of the ATS algorithm under the ITC-2007 competition stop
conditions.

Instance ATS
[xtin fave o Iter Pert Time(s)

test1 224 229.5 1.8 15,586 208 189
test2 16 171 1.0 35,271 406 182
test3 74 829 4.1 20,549 369 160
test4 74 89.4 6.1 37,346 735 208
comp01 5 5.0 0.0 321 5 5
comp02 34 60.6 7.5 15,647 545 370
comp03 70 86.6 6.3 8246 102 257
comp04 38 47.9 4.0 5684 68 124
comp05 298 328.5 11.7 35,435 54 191
comp06 47 69.9 7.4 13,457 245 116
compO07 19 28.2 5.6 15,646 368 383
comp08 43 51.4 4.6 17,404 190 380
comp09 99 113.2 6.9 20,379 238 370
comp10 16 38.0 10.8 16,026 160 389
compl1 0 0.0 0.0 236 3 3
comp12 320 365.0 17.5 40,760 590 382
comp13 65 76.2 6.1 16,779 182 300
compl4 52 62.9 6.4 24,427 270 368
comp15 69 87.8 7.3 20,666 275 386
comp16 38 53.7 6.4 8512 99 215
comp17 80 100.5 7.8 15,009 151 364
comp18 67 82.6 53 51,612 577 389
comp19 59 75.0 5.9 8788 94 225
comp20 35 58.2 8.5 6188 61 187
comp21 105 125.3 7.6 16,566 167 348
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Table 4
Best results and comparison with other algorithms under the ITC-2007 timeout
conditions.

Instance ATS TS ILS [11] [23] [16] [14] [9] Best known

test1 224 230 226 234 - = = - 234
test2 16 16 16 17 - - - - 17
test3 74 82 79 86 - - - - 86
test4 74 92 83 132 - - = - 132
comp01 5 5 5] 5 5 13 5) 9 5

comp02 34 55 48 75 43 43 108 103 43
comp03 70 90 76 93 72 76 115 101 72
comp04 38 45 41 45 35 38 67 55 35
comp05 298 315 303 326 298 314 408 370 298
comp06 47 58 54 62 41 41 94 112 41
compO07 19 33 25 38 14 19 56 97 14
comp08 43 49 47 50 39 43 75 72 39
comp09 99 109 106 119 103 102 153 132 102
comp10 16 23 23 27 9 14 66 74 9
compl1 0 0 0 0 0 0 0 1 0
compl2 320 330 324 358 331 405 430 393 331
comp13 65 71 68 77 66 68 101 97 66
compl4 52 55 53 59 53 54 88 87 53

comp15 69 78 74 87 - - - - 87
comp16 38 48 42 47 - - - - 47
comp17 80 85 81 86 - - - - 86
comp18 67 78 69 71 - - - - 71
comp19 59 65 65 74 - - - - 74
comp20 35 42 35 54 - - - - 54
comp21 105 115 106 117 - - - - 117

al. in [11] (results for these 4 instances are not available for the
other four reference algorithms). For the 21 public competition in-
stances, ATS reaches better (respectively worse) results than the
previous best known results for 13 (respectively 5) ones, with
equaling results for the remaining 3 ones. Note that for the seven
hidden instances (comp15 to comp21), computational results are
available only for the algorithm in [11] under ITC-2007 timeout
condition.

4.3. Results using more computational resources

In our second experiment, we evaluate the search potential of
our ATS algorithm with a relaxed stop condition. For this purpose,
we use a longer CPU time and run our ATS algorithm until 800,000
iterations are reached. Table 5 shows the computational statistics
of our ATS algorithm under this stop condition and indicates the
following information: fuin, fave, 0, Iter, Pert and Time(s) over 100
independent runs. The meaning of all these symbols are the same
as in Table 3. If we compare the results of ATS shown in Tables 3
and 5, one finds that better solutions (smaller fi;) are found under
the relaxed stop condition for 21 out of 25 instances. Moreover, the
averaged results (fie) and standard deviations (o) are also slightly
better.

Table 6 shows the best results obtained by our ATS algorithm’,
compared with the best known results available on the web site [2]
which is maintained by the organizers of ITC-2007. This site provides
a systematic information about the CB-CTT problem and the dynam-
ically updated best known results uploaded by researchers (the col-
umn “best known” in Table 6).2 We also cited the best results
obtained by Schaerf and Miiller from the web site [2].

From Table 6, one finds that our ATS algorithm reaches quite
competitive results. For the 25 tested instances, ATS reaches better
(respectively worse) results than the previous best known results
for 12 (respectively 5) ones, with equaling results for the remain-

1 Our best results are available on the web site [2].
2 These previous best known results are up to the date of November 28, 2008.

Table 5
Computational statistics of ATS algorithm under relaxed stop condition.
Instance ATS

Jtm fave a Iter Pert Time(s)
test1 224 227.2 0.5 17,845 234 216
test2 16 16.0 0 32,416 351 167
test3 73 76.0 213 40,849 667 2078
test4 73 86.4 4.23 109,198 2054 1678
compO01 5 5.0 0.0 321 5 5
comp02 29 50.6 8.78 768,334 1032 3845
comp03 66 78.6 6.07 160,909 1903 2078
comp04 35 423 3.53 23,113 266 566
comp05 292 328.5 11.7 35,435 54 191
comp06 37 57.3 8.1 562,144 3213 5973
comp07 13 29.7 6.48 390,912 3508 4035
comp08 39 48.8 3.75 203,982 2352 3069
comp09 96 110.3 5.8 215,891 2711 1754
comp10 10 28.8 9.0 33,971 371 838
compl1 0 0.0 0.0 247 4 3
comp12 310 328.5 11.7 742,316 10,392 2513
comp13 59 69.9 7.4 793,989 10,078 4207
comp14 51 56.3 4.95 93,549 1165 1320
comp15 68 79.8 5.75 193,200 2429 9355
comp16 23 46.8 6.6 264,512 1174 10280
compl7 69 91.1 6.7 181,977 1995 2812
comp18 65 74.6 4.7 134,205 985 7526
comp19 57 69.4 4.6 105,983 1320 9835
comp20 22 421 6.7 216,482 3265 8746
comp21 93 117.8 6.9 184,065 1345 4891

ing 8 ones, showing the strong search potential of our ATS
algorithm.

Recently, a branch-and-cut procedure [7] and an integer pro-
gramming approach [16] were proposed to find the lower bounds
of the CB-CTT problem. However, except for few instances (marked
with a * in Table 6), these results are far from the current best
known results. Given this fact, it is difficult to have an absolute
assessment of these results for the moment. Therefore, tight lower
bounds are necessary to be developed.

4.4. Comments on the ITC-2007 competition

In this section, we review the ITC-2007 competition rules and
results. For ITC-2007, the evaluation process was divided into
two phases [1]. The first phase aimed to selected the (five) Finalists
and the selection was based on the computational results of the
first 14 competition instances (comp01-comp14). The second phase
used an additional set of 7 hidden instances (comp15-comp21, now
they become available for researchers).

For each of the 21 competition instances, the organizers solved
it with 10 independent runs using each of the five finalist algo-
rithms. A ranking was then calculated based on these 50 results
for the given instance. At the end, a final ranking was established
according to the ranks realized on the 21 instances. The details
about the rules used for ranking the algorithms can be found from
the ITC-2007 competition site [1]. Table 7 shows the best results
obtained by the five finalists and the final rankings (the best results
for each instance are indicated in bold). According to the ITC-2007
competition rules, our ATS algorithm is the second place winner?,
just behind the algorithm presented in [23].

Let us give two final comments. First, the best results shown at
the competition web site are slightly worse than those reported in
this paper (true not only for our ATS algorithm, but also for the
winner algorithm in [23]). This can be easily explained by the fact

3 See http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm.
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Table 6
Best results and comparison with other algorithms under relaxed stop condition.

Instance ATS Schaerf Miiller Best known [2]
test1 224 234 - 234

test2 16 16 - 16"

test3 73 82 - 82

test4 73 130 - 130

comp01 5 5 5 5

comp02 29 56 35 33

comp03 66 79 66 66

comp04 35 38 35 35"

comp05 292 316 298 298

comp06 37 55 37 37

comp07 13 26 14 7

comp08 39 42 38 38

comp09 96 104 100 99

comp10 10 19 7 7

comp11 0 0 0 0

comp12 310 342 320 320

comp13 59 72 61 60

compl4 51 57 53 51

comp15 68 79 70 70

comp16 23 46 30 28

compl7 69 88 70 70

comp18 65 75 75 75

comp19 57 64 57 57

comp20 22 32 22 17

comp21 93 107 89 89

Table 7

Competition results of ITC-2007: best results on all the 21 competition instances.
Instance Miiller Li & Hao Atsuta Geiger Clark
compO01 5 5 5 5 10
comp02 51 55 50 111 111
comp03 84 71 82 128 119
comp04 37 43 35 72 72
comp05 330 309 312 410 426
comp06 48 53 69 100 130
compO07 20 28 42 57 110
comp08 41 49 40 77 83
comp09 109 105 110 150 139
comp10 16 21 27 71 85
comp11 0 0 0 (1] 3
compl12 333 343 351 442 408
comp13 66 73 68 622 113
comp14 59 57 59 90 84
compl5 84 71 82 128 119
comp16 34 39 40 81 84
comp17 83 91 102 124 152
compl18 83 69 68 116 110
comp19 62 65 75 107 111
comp20 27 47 61 88 144
comp21 103 106 123 174 169
rank 12.9 16.7 17.6 38.2 4222

that the ITC-2007 competition ranking was based only on 10 inde-
pendent runs while in this paper and [23] much more runs (100)
are used. With the same timeout and given the stochastic nature
of these algorithms, more runs would lead to better “best” results
(fvest)- Moreover, 10 runs may not be sufficient for reliable statistics
(average, standard deviation). This is why 100 runs were preferred
in this paper. Second, the competition results show that the differ-
ence between any pair of the first three best ranked algorithms is
relatively small, meaning probably that they have fundamentally
very similar search powers.

5. Analysis and discussion

We turn now our attention to the second objective of the paper,
i.e., to analyze some important features of the proposed ATS algo-

rithm. In this section, we attempt to answer a number of important
questions: Why do we combine the two neighborhoods and why
do we combine them in a token-ring way? Whether the new pro-
posed double Kempe chains neighborhood is really interesting?
How about the importance of the randomized penalty-guided per-
turbation strategy? We present below a series of experimental
analysis and attempt to answer these questions.

5.1. Neighborhood combination

We present in Section 3.2.2 two different neighborhoods. In or-
der to make out why these two neighborhoods should be com-
bined, we carried out experiments to compare the performance
of these two neighborhoods and their different combinations. In
this paper, we study two ways of neighborhood combination:
neighborhood union and token-ring search.

In neighborhood union (denoted by N; UN;), at each iteration
the neighborhood structure includes all the moves of two different
neighborhoods, while in token-ring search, one neighborhood
search is applied to the local minimum obtained by the previous
one and this process continues until no further improvement is
possible [12]. For token-ring combination, we begin the search in
two ways: from N; and N,, respectively, denoted by N; — N, and
N2 g N].

We apply the steepest descent (SD) algorithm with N;, N,
N; UN;, Ny — N, and N, — N; to solve the first 7 competition in-
stances. The average soft cost and CPU time (seconds, in brackets)
over 50 independent SD runs are given in Table 8. From Table 8,
one clearly finds that N; — N, and N, — N; obtain much better re-
sults than not only the single neighborhoods N; and N, but also
neighborhood union N; U N,. When comparing two different ways
of token-ring search N; — N, and N, — Ny, one observes that they
produce similar results in terms of the solution quality. However,
starting the search from the basic neighborhood N; costs less
CPU time than from the advanced neighborhood N,. These results
encourage us to combine the two neighborhoods N; and N, in a to-
ken-ring way in our ATS algorithm and starting the search from the
basic neighborhood N;.

5.2. Importance of the double Kempe chains move

In order to evaluate whether the newly proposed double Kempe
chains move is a value-added one, our second experiment is car-
ried out to evaluate the search capability of this neighborhood
move, compared with three other previously proposed ones. For
this purpose, we redefine four neighborhoods as follows: neighbor-
hood N'” includes all feasible move of moving one lecture. Neigh-
borhood N(lb) is defined as all the feasible moves of swapping two
lectures. Neighborhood N(z‘” consists in exchanging the hosting
periods assigned to the lectures in a single Kempe chain, while
neighborhood N(zb) concerns exchanging lectures of two Kempe
chains, see Section 3.2.2. Note that except N’ move, the first three
moves have been proposed in the previous literature [8]. It is easy

Table 8
Average soft costs for different neighborhoods and their combinations.
Instance f

N, N, N; UN, Ni — N, Ny, — N,
comp01 31(0.1) 23(0.1) 18 (0.2) 16 (0.2) 18 (0.2)
comp02 186 (0.4) 143 (1.8) 134 (2.3) 120 (1.6) 123 (1.7)
comp03 210 (0.4) 187 (1.2) 177 (2.0) 170 (1.2) 173 (1.3)
comp04 152 (0.7) 131 (3.5) 117 (6.7) 105 (2.9) 100 (4.0)
comp05 871 (0.4) 627 (0.4) 566 (0.5) 580 (0.9) 522 (1.0)
comp06 197 (0.8) 162 (4.7) 151 (8.2) 140 (3.1) 140 (5.0)
comp07 190 (1.2) 141 (8.4) 122 (15.2) 111 (5.7) 115 (8.0)
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Table 9
Average soft costs for N to N’ over 50 independent runs.
Instance f
b b

N N Ny N N,
comp01 42 (0.0) 33(0.1) 49 (0.0) 24 (0.1) 23 (0.1)
comp02 194 (0.4)  228(02)  204(0.4) 143 (14) 143 (18)
comp03 217 (04) 248 (02)  245(03) 193 (1.1) 187 (1.2)
comp04 153(0.7)  199(0.4)  194(0.6) 132(35) 131 (3.5)
comp05 1016 (03)  995(02) 847 (0.8) 684 (04) 627 (0.4)
comp06 207 (0.7)  260(0.4)  255(0.7)  158(46) 162 (4.7)
comp07 203 (1.1)  247(06)  230(13)  140(82) 141 (8.4)

to see that our neighborhoods N; and N, can be represented as:
Ny =N UNP and N, = NS UNY.

Table 9 shows the average cost functions for the SD algorithm
based on N to N over 50 independent runs. The averaged run-
ning times are given in parenthesis. From Table 9, it is observed
that the new proposed double Kempe chain neighborhood N(z”>
dominates the other three ones in terms of the solution quality.
Furthermore, one can easily find that neighborhood N(Z”) and N,
(the last column) obtains quite similar results in terms of both
solution quality and CPU time.

Let us mention that for both neighborhood combination (Sec-
tion 5.1) and double Kempe chains analysis shown in this section,
the same experiments have also been carried out on other in-
stances and on our TS, ILS and ATS algorithms (see [19] for more
details), which well coincide with the results here.

5.3. Analysis of penalty-guided perturbation strategy

In Section 3.3.1, we introduced a new penalty-guided perturba-
tion strategy to destruct the current solution when a local opti-
mum solution is reached. This strategy involves randomly
selecting the highly-penalized lectures and top rank lectures have
more chance to be selected. We believe that constraining the
choices to the highly-penalized lectures is essential for the ATS
algorithm.

In fact, there exist a lot of strategies to select the moved lectures
and perturb the local minimum solution. In order to testify the effi-
ciency of the proposed randomized penalty-guided perturbation
approach, we compare the following three lecture selection
strategies:

(a) Our penalty-guided perturbation strategy proposed in Sec-
tion 3.3.1, called randomized penalty-guided perturbation
(RPGP).

(b) The moved lectures are always the first # (1 is perturbation
strength) highly-penalized ones, called intensive penalty-
guided perturbation (IPGP).

(c) The moved lectures are randomly selected from all the lec-
tures, called random perturbation (RP).

Keeping other ingredients unchanged in our ATS algorithm, we
tested the above three lecture selection strategies with the first 14
competition instances under the competition timeout stop condi-
tion. Fig. 2 shows the average soft costs of these three strategies
over 50 independent runs. In order to compare the influence of
these three perturbation techniques, we performed a 95% confi-
dence t-test to compare RPGP with IPGP and RS. We found that
for 11 (respectively 8) out of the 14 instances, the difference of
the computational results obtained by RPGP and RS (respectively
IPGP) is statistically significant. These results highlight the impor-
tance of the penalty-guided perturbation strategy as well as imply-
ing that always restricting moved lectures to high penalized ones is
too intensive such that the search may fall easily into a previous
local optimum.
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Fig. 2. Average soft costs for perturbation strategies RPGP, IPGP and RS.

On the other hand, from the computational results of TS and
ILS reported in Table 4, we can clearly find that ILS with the pen-
alty-guided strategy even outperforms TS (without perturbation)
for almost all the 25 instances. This convinces us again that con-
straining the choice to highly-penalized lectures is essential be-
cause it is these lectures that contribute strongly to constraint
violations (and the cost function). Meanwhile, we should also no-
tice that the random selection strategy makes our perturbation
strategy much more flexible than the intensive penalty-guided
strategy.

6. Conclusions

In this paper, we dealt with the curriculum-based course
timetabling problem which constitutes the track 3 of the Second
International Timetabling Competition. In addition to providing a
first mathematical formulation of the problem, we presented a
hybrid Adaptive Tabu Search algorithm to solve this difficult prob-
lem. The proposed ATS algorithm follows a general framework
composed of three phases: initialization, intensification and
diversification.

The proposed algorithm integrates a number of original fea-
tures. First, we have introduced the double Kempe chains neigh-
borhood structure for the CB-CTT problem and a special
technique for reducing the size of this time-consuming yet effec-
tive neighborhood. Second, we proposed a randomized penalty-
guided perturbation strategy to perturb current solution when
TS reaches the local optimum solution. Last but not least, for
the purpose of providing the search with a continuous tradeoff
between intensification and diversification, we have proposed a
mechanism for adaptively adjusting the depth of TS and perturba-
tion strength.

We assessed the performance of the proposed ATS algorithm on
two sets of 25 problem instances under the ITC-2007 timeout con-
dition. For these instances, we showed the advantageous merits of
the proposed ATS algorithm over TS and ILS alone, as well as five
other reference algorithms which include the winner algorithm
of ITC-2007 [23] and the current best known results. We also pre-
sented the best solutions we have found so far when the competi-
tion stop condition is relaxed. These results were compared with
the current best known results reported on the web site [2]. The
above computational results and comparisons showed the effi-
ciency of our ATS algorithm.

Our second contribution in this paper is to investigate several
essential parts of our proposed algorithm. We first carried out
experiments to demonstrate that a token-ring way of combination
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is appropriate for the two different neighborhoods N; and N,. In
addition, we carried out experiments to show that the proposed
double Kempe chains move outperforms three other previous ones
in the literature. Finally, we have demonstrated that our random-
ized penalty-guided perturbation strategy is essential for our ATS
algorithm.

Let us finally comment that although the focus of this work is to
propose a particular algorithm for solving a course timetabling
problem, the basic ideas are quite general and would be applicable
to other similar problems.
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